Eigenvalues and Eigenvectors

P. Sam Johnson

May 26, 2017

We study eigenvalues and eigenvectors associated with a complex squrare matrix. These are useful in the study of canonical forms of a matrix under similarity and in the study of quadratic forms.

They have applications in many subjects like Geometry, Mechanics, Astronomy, Engineering, Economics and Statistics.

For any $n \times n$ matrix A, consider the polynomial

$$
\chi_{A}(\lambda):=|\lambda I-A|=\left|\begin{array}{cccc}
\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \tag{1}\\
-a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 1} & -a_{n 2} & \cdots & \lambda-a_{n n}
\end{array}\right| .
$$

Clearly this is a monic polynomial of degree n.
By the fundamental theorem of algebra, $\chi(A)$ has exactly n (not necessarily distinct) roots.

$\chi_{A}(\lambda)$	the characteristic polynomial of A
$\chi_{A}(\lambda)=0$	the characteristic equation of A
the roots of $\chi_{A}(\lambda)$	the characteristic roots of A
distinct roots of $\chi_{A}(\lambda)$	the spectrum of A

- The constant terms and the coefficient of λ^{n-1} in $\chi_{A}(\lambda)$ are $(-1)^{n}|A|$ and $\operatorname{tr}(A)$.
- The sum of the characteristic roots of A is $\operatorname{tr}(A)$ and the product of the characteristic roots of A is $|A|$.
- Since $\lambda I-A^{T}=(\lambda I-A)^{T}$, characteristic polynomials of A and A^{T} are the same.
- Since $\lambda I-P^{-1} A P=P^{-1}(\lambda I-A) P$, similar matrices have the same characteristic polynomials.
- If A is (upper or lower) triangular then $\chi_{A}(\lambda)=\Pi_{i=1}^{n}\left(\lambda-a_{i i}\right)$ and the characteristic roots of A are the diagonal entries of A.
- Finding the characteristic roots of a matrix is not easy in general, since there is no easy way of finding the roots of a polynomial of degree greater than 3.

Just like determinant, characteristic polynomial canbe defined for a linear operator ϕ on a vector space V as the characteristic polynomial of the matrix of ϕ with respect to any basis of V.

Suppose A and B are matrices of a linear operator ϕ with respect to bases B_{1} and B_{2} of V respectively. Then $\chi_{A}(\lambda)=\chi_{B}(\lambda)$.

Theorem

Let A and B be matrices of orders $m \times n$ and $n \times m$ respectively, where $m \leq n$. Then $\chi_{B A}(\lambda)=\lambda^{n-m} \chi_{A B}(\lambda)$.

Proof. Let $r=\operatorname{rank}(A)$. There exist non-singular matrices P and Q such that

$$
P A Q=\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] \text { and } Q^{-1} B P^{-1}=\left[\begin{array}{cc}
C & D \\
E & G
\end{array}\right]
$$

where C is of order $r \times r$. Then

$$
P A B P^{-1}=\left[\begin{array}{ll}
C & D \\
0 & 0
\end{array}\right] \text { and } Q^{-1} B A Q^{-1}=\left[\begin{array}{ll}
C & 0 \\
E & 0
\end{array}\right] .
$$

Hence

$$
\chi_{A B}(\lambda)=\chi_{P A B P-1}(\lambda)=\left|\begin{array}{cc}
\lambda I_{r}-C & -D \\
0 & \lambda I_{m-r}
\end{array}\right|=\left|\lambda I_{r}-C\right| \lambda^{m-r}
$$

and

$$
\chi_{B A}(\lambda)=\chi_{Q B A Q^{-1}}(\lambda)=\left|\begin{array}{cc}
\lambda I_{r}-C & 0 \\
-E & \lambda I_{n-r}
\end{array}\right|=\left|\lambda I_{r}-C\right| \lambda^{n-r} .
$$

Thus $\chi_{B A}(\lambda)=\lambda^{n-m} \chi_{A B}(\lambda)$.

- For any two $n \times n$ matrices A and B, the characteristic polynomials of $A B$ and $B A$ are the same.
- If $A B$ is not square, the non-zero characteristic roots of $A B$ are the same as those of $B A$.

Definition

A complex number α is an eigenvalue of A if there exists $x \neq 0$ in \mathbb{C}^{n} such that $A x=\alpha x$. Any such (non-null) x is an eigenvector of A corresponding to the eigenvalue α.

When we say that x is an eigenvector of A we mean that x is an eigenvector of A corresponding to some eigenvalue of A.

Two observations:

- α is an eigenvalue of A iff the system $(\alpha I-A) x=0$ has a non-trivial solution.
- α is a characteristic root of A iff $\alpha I-A$ is singular.

Theorem
A number α is an eigenvalue of A iff α is a characteristic root of A.

The preceding theorem shows that eigenvalues are the same as characteristic roots. However, by 'the characteristic roots of A ' we mean the n roots of the characteristic polynomial of A whereas 'the eigenvalues of A^{\prime} would mean the distinct characteristic roots of A.

Equivalent names:

Eigenvalues	proper values, latent roots, etc.
Eigenvectors	characteristic vectors, latent vectors, etc.

Theorem

Let β an eigenvalue of A and $f(\lambda)$ be a polynomial. Then $f(\beta)$ is an eigenvalue of $f(A)$.

Proof. Let x be an eigenvector of A corresponding to β. Then $A x=\beta x$. Premultiplying by A, we get $A^{2} x=\beta^{2} x$. Proceeding like this we get $A^{k} x=\beta^{k} x$ for all $k \geq 0$, so $f(A) x=f(\beta) x$. Since $x \neq 0, f(\beta)$ is an eigenvalue of $f(A)$.

Theorem

Each eigenvalue of an idempotent matrix A is 0 or 1 .

Proof. Let β an eigenvalue of A and let $f(\lambda)=\lambda^{2}-\lambda$. Then $f(A)=A^{2}-A=0$. By previous theorem, $f(\beta)=0$. Hence β is 0 or 1 .

More generally, if β is an eigenvalue of a matrix A and $f(\lambda)$ is any polynomial such that $f(A)=0$, then $f(\lambda)=0$.

If α is an eigenvalue of A, the set of all eigenvectors of A corresponding to α, together with 0 , forms $N(\alpha I-A)$, called the eigen space of A corresponding to α and is denoted by $E S(A, \alpha)$.
$\operatorname{dim}[E S(A, \alpha)]$ is called the geometric multiplicity of α with respect to A. Note that $E S(A, 0)=N(A)$ and $E S(A, \alpha) \subseteq C(A)$ if $\alpha \neq 0$.

Another type of multiplicity of an eigenvalue α of A :
The number of times α appears as a root of the characteristic equation of A. This is called the algebraic multiplicity of α with respect to A.

Relation between the two multiplicities:

Let V be a vector space having dimension n.

- The sum of albraic multiplicities is equal to the dimension of V, n.
- If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are the distinct eigenvalues of an $n \times n$ matrix A with geometric multiplicities $n_{1}, n_{2}, \ldots, n_{k}$ respectively, then $n_{1}+\cdots+n_{k} \leq n$.

Theorem

For any eigenvalue α of A, the algebraic multiplicity of α with respect to A is not less than the geometric multiplicity of α with respect to A.
That is, $\operatorname{sim}[E S(A, \alpha)]$ is at most the algebraic multiplicity of α with respect to A. (or) The algebraic multiplicity of α with respect to A is at least $\operatorname{sim}[E S(A, \alpha)]$.

Proof of the theorem

Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a basis of $E S(A, \alpha)$ and $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ an extension to a basis of \mathbb{C}^{n}. Then $P:=\left[x_{1}: x_{2}: \cdots: x_{n}\right]$ is non-singular and

$$
\begin{aligned}
P^{-1} A P & =P^{-1}\left[A x_{1}: A x_{2}: \cdots: A x_{n}\right] \\
& =P^{-1}\left[\alpha x_{1}: \alpha x_{2}: \cdots: \alpha x_{n}: A x_{k+1}: \cdots: A x_{n}\right]
\end{aligned}
$$

Since for each $j=1,2, \ldots, k, P^{-1}\left(\alpha x_{j}\right)=\alpha P^{-1} P_{* j}=\alpha e_{j}$.
$P^{-1} A P=\left[\begin{array}{cc}\alpha l_{k} & B \\ 0 & C\end{array}\right]$ for some matrices B and C.
Hence $\chi_{A}(\lambda)=\chi_{P^{-1} A P}(\lambda)=(\lambda-\alpha)^{k} \chi_{C}(\lambda)$.
Thus the number of times α appears as a root of the characteristic equation of A is at least $k=\operatorname{dim}[E S(A, \alpha)]$.

Let α be an eigenvalue of A.

α is regular	the algebraic and the geometric multiplici- ties of α with respect to A are equal
α is simple	the algebraic multiplicity of α with respect to A is 1

Note that every simple eigenvalue is regular.

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ be distinct eigenvalues of A and let $x_{1}, x_{2}, \ldots, x_{k}$ be corresponding eigenvectors. Then $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent.

Corollary

If $S_{1}, S_{2}, \ldots, S_{k}$ are the eigenspaces corresponding to distinct eigenvalues of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ of a matrix A, then Let $S_{1}+\cdots+S_{k}$ is direct.

We have seen that if $A B$ is a square matrix then every nonzero eigenvalue of $A B$ is also an eigenvalue of $B A$ with the same algebraic multiplicity.

We now show that the geometric multiplicity also remains the same.

Theorem

Let α be a nonzero eigenvalue of a square matrix $A B$, where A and B need not be square. Then α is an eigenvalue of $B A$ with the same geometric multiplicity.

Proof of the theorem

Note that $x \in E S(A, \alpha)$, then $A B x=\alpha x$. Hence $B A B x=\alpha B x$, so $B x \in E S(A, \alpha)$. Similarly, if $x \in E S(A, \alpha)$, then $B A x=\alpha x$. Hence $A B A x=\alpha A x$, so $A x \in E S(A, \alpha)$.

Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ be a basis of $E S(A, \alpha)$. Then $\left\{B x_{1}, B x_{2}, \ldots, B x_{r}\right\}$ be a basis of $E S(B A, \alpha)$.

Claim: $\left\{B x_{1}, B x_{2}, \ldots, B x_{r}\right\}$ is a linearly independent set. Suppose $\sum_{i=1}^{r} \beta_{i} B x_{i}=0$ for all $i=1,2, \ldots, r$. Then $\left\{B x_{1}, B x_{2}, \ldots, B x_{r}\right\}$ is a linearly independent set. Hence $\operatorname{dim}[E S(B A, \alpha)] \geq r=\operatorname{dim}[E S(A, \alpha)]$.

Thus geometric multiplicity of α with respect to $B A \geq$ geometric multiplicity of α with respect to $A B$.

By symmetry the reverse inequality holds and equality follows.

The above theorem can be used effectively to find eigenvectors of $B A$ when $A B$ is of smaller order than $B A$, for example, if (B, A) is a rank factorization of a singular matrix.

Theorem
Let x be a non-null vectors. Then there exists an eigenvector y of A belonging to the span of $\left\{x, A x, A^{\times}, \ldots\right\}$.

Theorem

Every $n \times n$ complex matrix A is similar to an upper trigngular matrix over \mathbb{C}.

Proof. We prove by induction on n. If $n=1$, the result holds trivially. So assume it for matrices for order $n-1$. Let A be of order n. Let α be an eigenvalue of A; x be an eigenvector of A corresponding to α, and P be a non-singular matrix with x as the first column.

Then $P^{-1} A P=\left[\begin{array}{cc}\alpha & y^{T} \\ 0 & C\end{array}\right]$, for some $y \in \mathbb{C}^{n-1}$ and $C \in \mathbb{C}^{n-1} \times C^{n-1}$.
By induction hypothesis, there exists a non-singular matrix W of order $n-1$ such that $T:=W^{-1} C W$ is upper triangular.
$Q:=\left[\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right]$ is non-singular, so $P Q$ is non-singular, and
$(P Q)^{-1} A(P Q)=\left[\begin{array}{cc}1 & 0 \\ 0 & W^{-1}\end{array}\right]=\left[\begin{array}{cc}\alpha & y^{T} \\ 0 & C\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\alpha & y^{\top} W \\ 0 & T\end{array}\right]$
is upper triangular.

The preceding theorem does not hold over \mathbb{R} since a real matrix may not have real eigenvalues.

Theorem
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the characteristic roots of A and $f(\lambda)$ be a polynomial. Then $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{n}\right)$ are the characteristic roots of $f(A)$.

Proof. As any matrix is similar to a diagonal matrix, there exists a non-singular matrix P such that $T:=P^{-1} A P$ is upper triangular. Since A and T have the characteristic roots, we may take $t_{i i}=\lambda_{i}$, for $i=1,2, \ldots, n$.

By induction on k, we have $T^{k}:=P^{-1} A^{k} P$, for all $k \geq 0$. if $f(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{s} \lambda_{s}$, we have

$$
\begin{aligned}
f(T) & =a_{0} I+a_{1} T+\cdots+a_{s} T^{s} \\
& =a_{0} P^{-1} P+a_{1} P^{-1} A P+\cdots+a_{s} P^{-1} A^{s} P \\
& =P^{-1}\left(a_{0} I+a_{1} T+\cdots+a_{s} T^{s}\right) P \\
& =P^{-1} f(A) P .
\end{aligned}
$$

Hence $f(T)$ is upper triangular with $f\left(t_{11}, t_{22}, \ldots, t_{n n}\right.$ as the diagonal entries, hence the characteristic roots of $f(A)$ are $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{n}\right)$.

Corollary
If A is singular the algebraic multiplicities of 0 with respect to A^{ℓ} and with respect to A, are equal for any positive integer ℓ.

A polynomial $f(A)$ is said to annihilate A if $F(A)=0$. If f annihilates A, αf also annihilates A.

For any squae matrix A, there exists a non-zero annihilating polynomial. This also follows from the fact that $I, A, \ldots, A^{n^{2}}$ are linearly dependent in $f^{n \times n}$.

Does there exist a monic polynomial annihilating A ? The answer is affirmative by the following theorem.

Cayley - Hamilton theorem. For every matrix A, the characteristic polynomial of A annihilates A. That is, every matrix satisfies its own characteristic equation.

Simple proof? We have $\chi_{A}(\lambda)=|\lambda I-A|$. Replace λ by A, shall we get the Cayley - Hamilton theorem.

Two main uses of Cayley-Hamilton theorem

(1) To evaluate large powers A.
(2) To evaluate a polynomial in A with large degree even if A is singular.
(3) To express A^{-1} as a polynomial in A whereas A is non-singular.

Definition

A monic polynomial of the least degree which annihilates A is called a minimal polynomial of A, denoted by $m(\lambda)$.

Minimal polynomial of A is unique. Suppose k is the minimum degree of a nonzero polynomial annihilating A and $f \& g$ are two monic polynomials of degree k annihilating A.

Then $h=f-g$ also annihilates A and has degree less than k, so $h=0$ and $f=g$.

By Cayley-Hamilton theorem, the degree of the minimal polynomial of an $n \times n$ matrix A is at most n.

Theorem

The minimal polynomial of A divides every polynomial which annihilates A.

Proof. Let $f(\lambda)$ be the minimal polynomial of A and let $g(A)=0$. Since $f \neq 0$, there exist polynomials $q(\lambda)$ and $r(\lambda)$ such that $g(\lambda)=f(\lambda) a(\lambda)+r(\lambda)$ where $\operatorname{deg}(r(\lambda))<\operatorname{deg}(f(\lambda))$.

Then $0=g(A)=f(A) q(A)+r(A)=r(A)$. Thus $r(\lambda)$ annihilates A. By the minimality of $f, r(\lambda)=0$, so f divides g.

Thus the minimal polynomial not only has the least degree among the nonzero polynomials annihilating A but also divides each of them.

The minimal polynomial of A divides the characteristic polynomial of A.

How to find the minimal polynomial?

(1) Once an annihilating polynomial $g(\lambda)$ is known, the search for the minimal polynomial can be restricted to the factors of $g(\lambda)$.
(2) If A is idempotent, then $\lambda^{2}-\lambda$ annihilates A, so the minimal polynomial of A is $\lambda, \lambda-1$, or $\lambda^{2}-\lambda$.
(3) If A is neither 0 or I, the minimal polynomial of A is $\lambda^{2}-\lambda$.

Theorem
A complex number α is a root of the minimal polynomial of A iff α is a characteristic root of A.

Proof. α is a root of the minimal polynomial, $m_{A}(\lambda)$ of A.
Then $m_{A}(\alpha)=0$, hence $\chi_{A}(\alpha)=m_{A}(\alpha) g(\alpha)$. Thus α is a characteristic root of A.

Converse?
(1) The distinct roots of the minimal polynomial coincides with those of the characteristic polynomial.
(2) The minimal polynomial of A coincides with the characteristic polynomial of A if A has n distinct characteristic roots. A matrix A with the property is said to be non-derogatory.
(3) The minimal polynomial of a matrix need not be a product of distinct linear factors.
(9) The minimal polynomial of a diagonal matrix A is $\prod_{i=1}^{k}\left(\lambda-d_{i}\right)$ where $d_{1}, d_{2}, \ldots, d_{k}$ are the distinct entries of A.

Theorem

Similar matrices have the same minimal polynomial.

Proof. Let $B=P^{-1} A P$. Then $B^{k}:=P^{-1} A^{k} P$, for all $k \geq 0$ and $f(B)=P^{-1} f(A) P$ for any polynomial f. Thus $f(B)=0 \Longleftrightarrow f(A)=0$, so A and B have the same minimal polynomial.
\therefore We can define the minimal polynomial of a linear operator ϕ on a vector space V as the minimal polynomial of the matrix of ϕ with respect to any basis of V.

If f is any polynomial and A is the matrix of ϕ with respect to a basis B, then $f(A)$ is the matrix of $f(\phi)$ with respect to B. Thus $f(A)=0 \Longleftrightarrow f(\phi)=0$, and the minimal polynomial of ϕ is the monic polynomial of the least degree which annihilates ϕ.

We have seen that every matrix is similar to an upper triangular matrix. But not every matrix is similar to a diagonal matrix.

Example
Suppose $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is similar to a diagonal matrix D. Since $\chi_{A}(\lambda)=\chi_{D}(\lambda)$, both the characteristic roots of D are 0 . Thus $D=0$, which is impossible.

Definition

A matrix is semi-simple or diagonalable if it is similar to a diagonal matrix.

Let A be the matrix of a linear operator ϕ on V with respect to some basis.
A is semisimple \Longleftrightarrow there is a coordinate system (with the same origin) each of whose coordinate axes is left invariant by ϕ.

Suppose A is semisimple and $P^{-1} A P=D:=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Then $A P=P D$, so $A P_{* j}=d_{j} P_{* j}$. Thus the columns of P are linearly independent eigenvectors of A (corresponding to the diagonal entries of D in the same order).

Conversely, if A has n linearly independent eigenvectors and P is the matrix formed with these vectors as the columns, then $P^{-1} A P$ is diagonal.

Let A be an $n \times n$ matrix. TFAE
(1) A is semisimple,
(2) the minimal polynomial of A is a product of distinct linear factors or equivalently, there exists an annihilating polynomial of A which is a product of distinct linear factors,
(3) all eigenvalues of A are regular,
(9) the sum of the eigenspaces of A is \mathbb{C}^{n},
(3) A has n linearly independent eigenvectors.

- An $n \times n$ matrix with n distinct eigenvalues is semisimple (because if all the characteristic roots of A are distinct, then each is simple and so regular).
- An idempotent matrix is semisimple because $\lambda(\lambda-1)$ annihilates an idempotent matrix.

Let A be an $n \times n$ matrix. TFAE.
(1) A is semisimple and has rank r.
(2) There exists a nonsingular matrix P of order n and a diagonal nonsingular matrix Δ of order r such that $A=P\left[\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right] P^{-1}$.
(3) There exist nonzero scalars $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ and vectors $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{C}^{n}$ such that $v_{i}^{T} u_{j}=\delta_{i j}$ for all i, j and $A=\sum_{i=1}^{n} \delta_{i} u_{i} v_{i}^{T}$.
(9) There exist matrices R, S and Δ of orders $n \times r, r \times n$ and $r \times r$ respectively such that D is diagonal and nonsingular, $S R=I$ and $A=R \Delta S$.

